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Abstract: Machine learning is used to estimate the coherent-coupling power enhancement
from 2×1 VCSEL arrays and serves to identify coherent non-Hermitian operation. © 2021
The Author(s)

1. Introduction

(a) Microscope image of
a 2×1 VCSEL array

(b) Power as a function of
dual driving current for a
2×1 VCSEL array.

Fig. 1

Photonic Crystal VCSEL arrays such as shown in Fig.
1a have demonstrated numerous novel static and dy-
namic properties that occur when the optical modes in
the element cavities couple to each-other, ranging from
increased output power and beam-steering to decrease
noise [1] and higher modulation bandwidths [2]. The in-
dependent control of the injection current and thus gain
in each of the coupled VCSEL elements enables the
arrays to ve electronically adjusted to coherent opera-
tion [3] which produces non-Hermitian supermodes [4].
However, characterization of coherence in such lasers is
nontrivial. Machine learning has been previously pro-
posed for the analysis of transverse modes in individual
lasers [5], and here we propose using it to assist in the
analysis of mode coupling within laser arrays. We ex-
plore the application of machine learning (ML) methods
to optical power measurements for VCSEL arrays to enable scalable automated identification of non-Hermitian super-
mode operation and determination of the imaginary coupling coefficient.

2. Methods and Analysis

The measured optical output power of a 2× 1 VCSEL array as a function of driving current to either element is
plotted in Fig. 1b. This power measurement shows an obvious “ridge” of increased power along the diagonal that is
attributed to coherent coupling between the two element cavities. In order to estimate the power enhancement at each
current set-point, we must have an estimate for the uncoupled array power. A simple “naive” estimate is simply the
sum of the individual element powers, Puncoupled,est.(I1, I2) = P(I1,0)+P(0, I2).

(a) “Naive” uncoupled
power estimate

(b) “Naive” power
enhancement estimate

(c) ML uncoupled
power estimate

(d) ML power
enhancement estimate

Fig. 2: Using the naive uncoupled array power estimate to calculate the power enhancement.
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We calculate the naive estimate for uncoupled array power and plot in Fig. 2a. The power enhancement is then
estimating using this estimate in Fig. 2b. The naive estimate of the excess power is negative for almost all of the
measured points, including the coherent ridge, indicating a major issue in this approach. The fatal flaw is that regardless
of coherent coupling between the cavities, the two lasers have thermal cross-talk that leads to the output power of one
cavity to be dependent on the injection to the other cavity, even in the uncoupled regime [3]. This necessitates a more
sophisticated estimate of the uncoupled array power that incorporates these effects.

We use a dense neural network that predicts the total array power given a pair of driving current values (2→ 1
mapping for a 2×1 array) that has been trained on the measured data. An appropriately designed network will estimate
the uncoupled array power incorporating thermal shift effects but not coherent power enhancement, as shown in Fig.
2c. We use this machine-learning obtained estimate to calculate an improved estimate of the power enhancement,
plotted in Fig. 2d. This estimate is better than the naive estimate for identifying the coherent region, which is now
estimated to be a positive value. However, the uncoupled array power estimate still shows error (as evident by the non-
zero values away from the coherent ridge in Fig. 2d) that further optimization of neural network design and training
may reduce.

The neural network provides an estimate for the uncoupled array power Ptotal, and this quantity is subtracted from
the measured total (coherently coupled) power to obtain the coherent power enhancement ∆Ptotal. This quantity also
can be used to identify the coherently coupled regime, where the array produces low divergence beam-steering and
operates with enhanced modulation bandwidth. Literature relates the magnitude of the imaginary component of the
coupling coefficient as proportional to coherent power enhancement, |κi| ∝

∆Ptotal
a+Ptotal

for some constant a [6].

3. Conclusion

Preliminary results show that machine learning can provide an improved estimation of the uncoupled array optical
power from measured data enabling improved estimation of the power enhancement. The power enhancement may en-
able automated identification of coupled operation in VCSEL arrays, enabling enhanced power, beam, and modulation
performance, and is an essential term in determining the imaginary term of the coupling coefficient.
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