Guided Mode Expansion Analysis of Photonic Crystal Surface Emitting Lasers

Pawel Strzebonski, Kent Choquette Photonic Device Research Group 2021

Background: PCSELs

The What

- Photonic crystal surface emitting laser (PCSEL)
- A type of semiconductor diode laser, driven by Susumu Noda (Imada et al, APL 1999)
- The optical resonance is in-plane (like edge-emitting lasers)
- The optical emissions are out-of-plane (like VCSELs)
- A photonic crystal (PhC) provides optical confinement/feedback, mode control, and out-of-plane emissions

Yoshida, CLEO 2018

The Why

- Photonic crystal enables narrow spectral linewidth, broad area emission, high beam quality that scale to high power:
 - 200 µm diameter PCSEL, 1.5 Watts CW or 3.4 Watts pulsed, M²=1 up to 0.5 Watts (Hirose et al, CLEO 2014)
 - 500 µm diameter PCSEL, 10 Watts pulsed with M²<2.5 Yosida et al, CLEO 2018)
 - 3 mm diameter PCSEL, 150 Watts pulsed (Noda, PW 2021)
- Scale to larger area for higher power

The How

$$\Lambda = \frac{\lambda_0 m_B}{2 n_{eff}} \qquad \qquad \theta_D = \sin^{-1} \left(n_{eff} - m_D \frac{\lambda_0}{\Lambda} \right)$$

- Epitaxial waveguide confines inplane mode
- Photonic crystal produces resonant feedback/confinement, diffraction
- Period Λ , wavelength λ_0 , diffraction angle θ_D (angle from surfacenormal), effective index n_{eff} , and Bragg/diffraction orders m_B/m_D
- Both in-plane resonance and surface-normal diffraction if $m_B=2m_D$

Diffraction angles as a function of PhC period (in terms of in-material wavelengths)

Structures

Noda et al, JSTQE 2017

Numerous design variations:

- PhC shape (triangle, circles, ovals, ...)
- PhC lattice (triangular, square, ...)
- PhC material (semiconductor/air, allsemiconductor)
- PhC location (surface, buried-layer)
- Many more

Bian et al, IEEE PTL 2020

Q-Factors

- Quality, or Q, factor
- Many definitions:
 - In terms of complex resonance frequency
 - In terms of resonance bandwidth
 - In terms of cavity photon lifetime
 - In terms of stored energy in cavity E and power loss rate P
- Higher Q means lower losses
- Higher Q means lower modal threshold gain

 $Q = \frac{-\Re(\omega)}{2\Im(\omega)}$

 $Q = \frac{\omega}{\delta \omega}$

 $Q = \omega \tau_p$

 $Q = \frac{\omega E}{P}$

Computational Modeling

The Objectives

- <u>Desired features/capabilities for modeling software</u>:
- PhC mode frequencies (align to gain)
- PhC band diagrams (mode frequencies/slow-light)
- Mode Q-factor or threshold gain (mode control)
- Mode fields (near-field/far-field/beam)
- Full 3D structure (model both PhC and epitaxial design)

Some Options

- Finite-difference time-domain (FDTD):
 - Very capable (3D structures, mode frequencies, fields, and Q)
 - Slow, more involved results analysis
- Plane-wave expansion (PWE):
 - Great for PhCs (mode frequencies, fields, band diagrams)
 - Not good for non-repetitive dimensions (epitaxial structure)
- Rigorous coupled wave analysis (RCWA):
 - Relatively capable (3D structure, mode frequencies, Q-factors)
 - Modal fields are trickier to analyze
- Guided mode expansion (GME):
 - Great match to problem (3D structure, mode frequencies, Q-factors, bands, fields are all straightforward to analyze)

My Choice

- Chose guided mode expansion (GME) implemented by legume
- legume is free and open source software from Shanhui Fan's group at Stanford University
- Programmatic Python interface
- Modeling process:
 - Define PhC lattice (period and crystal axes)
 - Define top/bottom interfaces (air/substrate)
 - Define epitaxial layers (with etched features, if relevant)
 - Define wave-vectors (normal DFB modes or surface-emitting modes) and modes indices (first order or higher order resonances) to solve for
 - Calculate modes
 - Analyze modal frequencies, Q-factors, fields, coupling coefficients to substrate/air, etc

Basic Assumptions and Structure

- Assume InP/InGaAs and aim for 1550 nm wavelength
- Epitaxy provides dielectric slab waveguide
- Surface-etching provides PhC
- Use triangular PhC etch on square grid

Structure cross-sections, Shade is permittivity

Some Questions

- What are the effects of etch-depth on:
 - Resonance wavelengths?
 - Q-factor (diffraction loss)?
 - Out-coupling to substrate/air?
- What about higher order PCSEL designs and resonances?

Exploring Etch Depth: Results

Etch Depth and Wavelength

- Start with conventional PhC

 - First order
- Vary etch-depth (from surface)
- First 4 resonance wavelengths

Two pairs of (nearly) degenerate modes

Etch Depth and Q-Factor

- Deeper etch:
 - More mode-PhC interaction
 - Stronger diffraction
 - More loss
 - Lower Q
- But why does Q increase periodically?

Coupling Coefficients

- legume also calculate modal coupling coefficients to substrate/air
- Higher coupling coefficient implies higher radiation into a layer
- Looking at coupling coefficients we can see where the power is going (where the periodic loss goes)

Etch Depth and Coupling Coefficients

- Etching periodically varies power lost to the substrate
- We want primarily coupling to air, not substrate
- Prefer low substrate coupling → local Q maxima____

Higher Order Resonances?

- High lithography requirements are common issue with PhCs
- Larger period PhC may have the correct wavelengths as higher-order resonances
- The second band of resonances requires about 1.4 larger features (496 → 705 nm)

Higher Order Resonance

Same

 wavelength vs
 etch depth trend
 as first order
 resonance

Higher Order Resonance Q

- Q is of decreases faster than in first order
- Periodic variation much less pronounced

Future Exploration: In-Plane Modes

- Higher power → larger device area
- Larger device area → more in-plane PhC modes
- More in-plane PhC modes → reduced beam metrics
- How do we model device size and effects on in-plane modes?

- Basic PCSEL theory states lasing at the Γpoint (surface emission)
- Higher order in-plane modes are points off-set from Γ
- Off-sets are wave-vector k_x,k_y perturbations

Zoysa, PTL 2017

- Moving off the band edge changes:
 - Resonance wavelength
 - Slope of band (related to group velocity)
 - PhC Q-factor

- Consider regions/forms of optical loss:
 - PhC scattering (good loss)
 - Leakage through device perimeter (bad loss)
- Try to quantify these losses:
 - PhC scattering \rightarrow PhC Q (previously calculated)
 - Edge leakage → lateral Q
- How to estimate lateral Q?
 - Model in-plane structure as optical cavity (analogous to Fabry-Perot)
 - Calculate cavity mirror loss
 - Lateral Q from mirror loss and group velocity
- Higher modal group index (ie slow-light), longer photon lifetime and higher lateral Q

 $\frac{1}{\tau_n} = v_g(\alpha_i + \alpha_m) = \frac{\omega}{O}$

• Combine both PhC and lateral Q to get overall modal Q:

Conclusions

Summary

- Use GME to analyze PCSEL surface etch depth effects on:
 - Resonance wavelength shift
 - PhC mode Q-factor
 - Coupling to substrate/air
- Calculate higher-order resonances in larger period PhCs
- Develop potential method for GME analysis of in-plane modes of finite size PCSELs
- Future work:
 - Experimental validation of models in fabricated surface-etch PCSELs
 - Experimental demonstration of higher-order PCSELs
 - Further modeling analysis of in-plane PCSEL modes

