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Background: PCSELs



The What
 Photonic crystal surface emitting laser (PCSEL)

 A type of semiconductor diode laser, driven by Susumu Noda 
(Imada et al, APL 1999)

 The optical resonance is in-plane (like edge-emitting lasers)

 The optical emissions are out-of-plane (like VCSELs)

 A photonic crystal (PhC) provides optical confinement/feedback, 
mode control, and out-of-plane emissions

Yoshida, CLEO 2018



 Photonic crystal enables narrow spectral linewidth, broad 
area emission, high beam quality that scale to high power:

 200 μm diameter PCSEL, 1.5 Watts CW or 3.4 Watts 
pulsed, M2=1 up to 0.5 Watts (Hirose et al, CLEO 2014)

 500 μm diameter PCSEL, 10 Watts pulsed with M2<2.5 
Yosida et al, CLEO 2018)

 3 mm diameter PCSEL, 150 Watts pulsed (Noda, PW 
2021)

 Scale to larger area for higher power

The Why



 Epitaxial waveguide confines in-
plane mode

 Photonic crystal produces resonant 
feedback/confinement, diffraction

 Period Λ, wavelength λ0, diffraction 
angle θD (angle from surface-
normal), effective index neff, and 
Bragg/diffraction orders mB/mD 

 Both in-plane resonance and 
surface-normal diffraction if 
mB=2mD

Λ=
λ0mB

2neff

The How
θD=sin− 1(neff −mD

λ0

Λ )

Diffraction angles as a function of 
PhC period (in terms of in-material 
wavelengths)



Structures

Li et al, Micromachines 2019

Bian et al, IEEE PTL 2020

Noda et al, JSTQE 2017

Numerous design variations:
 PhC shape (triangle, circles, ovals, …)
 PhC lattice (triangular, square, ...)
 PhC material (semiconductor/air, all-

semiconductor)
 PhC location (surface, buried-layer)
 Many more



Q-Factors

Q=
−ℜ (ω )

2ℑ (ω )

Q=
ω
δω

Q=
ω E
P

 Quality, or Q, factor
 Many definitions:

 In terms of complex resonance 
frequency

 In terms of resonance bandwidth
 In terms of cavity photon lifetime
 In terms of stored energy in cavity E 

and power loss rate P
 Higher Q means lower losses
 Higher Q means lower modal 

threshold gain

Q=ω τ p



Computational Modeling



The Objectives

 Desired features/capabilities for modeling software:
 PhC mode frequencies (align to gain)
 PhC band diagrams (mode frequencies/slow-light)
 Mode Q-factor or threshold gain (mode control)
 Mode fields (near-field/far-field/beam)
 Full 3D structure (model both PhC and epitaxial 

design)



Some Options

 Finite-difference time-domain (FDTD):
 Very capable (3D structures, mode frequencies, fields, and Q)
  Slow, more involved results analysis

 Plane-wave expansion (PWE):
 Great for PhCs (mode frequencies, fields, band diagrams)
 Not good for non-repetitive dimensions (epitaxial structure)

 Rigorous coupled wave analysis (RCWA):
 Relatively capable (3D structure, mode frequencies, Q-factors)
 Modal fields are trickier to analyze

 Guided mode expansion (GME):
 Great match to problem (3D structure, mode frequencies, Q-factors, bands, fields are all 

straightforward to analyze)



My Choice

 Chose guided mode expansion (GME) implemented by legume
 legume is free and open source software from Shanhui Fan's group at Stanford 

University
 Programmatic Python interface
 Modeling process:

 Define PhC lattice (period and crystal axes)
 Define top/bottom interfaces (air/substrate)
 Define epitaxial layers (with etched features, if relevant)
 Define wave-vectors (normal DFB modes or surface-emitting modes) and modes indices 

(first order or higher order resonances) to solve for
 Calculate modes
 Analyze modal frequencies, Q-factors, fields, coupling coefficients to substrate/air, etc



Basic Assumptions and Structure

 Assume InP/InGaAs and 
aim for 1550 nm 
wavelength

 Epitaxy provides 
dielectric slab waveguide

 Surface-etching provides 
PhC

 Use triangular PhC etch 
on square grid

Structure cross-sections,
Shade is permittivity 

Air

Substrate

Waveguide

Cladding

Etched PhC



Some Questions

 What are the effects of etch-depth on:
 Resonance wavelengths?
 Q-factor (diffraction loss)?
 Out-coupling to substrate/air?

 What about higher order PCSEL designs 
and resonances?



Exploring Etch Depth: Results



Etch Depth and Wavelength

 Start with 
conventional PhC
 Λ=496 nm
 First order

 Vary etch-depth 
(from surface)

 First 4 resonance 
wavelengths

Two pairs of 
(nearly)
degenerate modes



Etch Depth and Q-Factor

 Deeper etch:
 More mode-PhC 

interaction

 Stronger diffraction

 More loss

 Lower Q

 But why does Q 
increase periodically?



Coupling Coefficients

 legume also calculate modal coupling 
coefficients to substrate/air

 Higher coupling coefficient implies higher 
radiation into a layer

 Looking at coupling coefficients we can see 
where the power is going (where the periodic 
loss goes)



Etch Depth and Coupling Coefficients

 Etching periodically 
varies power lost to the 
substrate

 We want primarily 
coupling to air, not 
substrate

 Prefer low substrate 
coupling→local Q 
maxima



Higher Order Resonances?

 High lithography requirements are 
common issue with PhCs

 Larger period PhC may have the correct 
wavelengths as higher-order resonances

 The second band of resonances requires 
about 1.4 larger features (496→705 nm)



Higher Order Resonance

 Same 
wavelength vs 
etch depth trend 
as first order 
resonance



Higher Order Resonance Q

 Q is of 
decreases faster 
than in first 
order

 Periodic 
variation much 
less pronounced



Future Exploration: In-Plane Modes



In-Plane PhC Modes

 Higher power→larger device area
 Larger device area→more in-plane PhC 

modes
 More in-plane PhC modes→reduced 

beam metrics
 How do we model device size and effects 

on in-plane modes?



In-Plane PhC Modes

 Basic PCSEL theory 
states lasing at the Γ-
point (surface emission)

 Higher order in-plane 
modes are points off-set 
from Γ

 Off-sets are wave-vector 
kx,ky perturbations

Zoysa, PTL 2017



In-Plane PhC Modes
 Moving off the band edge changes:

● Resonance wavelength
● Slope of band (related to group velocity)
● PhC Q-factor



In-Plane PhC Modes
 Consider regions/forms of optical loss:

● PhC scattering (good loss)
● Leakage through device perimeter (bad loss)

 Try to quantify these losses:
● PhC scattering→PhC Q (previously calculated)
● Edge leakage→lateral Q

 How to estimate lateral Q?
● Model in-plane structure as optical cavity (analogous to Fabry-Perot)
● Calculate cavity mirror loss
● Lateral Q from mirror loss and group velocity

 Higher modal group index (ie slow-light), longer photon 
lifetime and higher lateral Q

1
τ p

=vg (α i+αm )=
ω
Q



In-Plane PhC Modes
 Combine both PhC and lateral Q to get 

overall modal Q:



Conclusions



Summary
 Use GME to analyze PCSEL surface etch depth effects on:

● Resonance wavelength shift
● PhC mode Q-factor
● Coupling to substrate/air

 Calculate higher-order resonances in larger period PhCs
 Develop potential method for GME analysis of in-plane modes of finite 

size PCSELs
 Future work:

● Experimental validation of models in fabricated surface-etch PCSELs
● Experimental demonstration of higher-order PCSELs
● Further modeling analysis of in-plane PCSEL modes
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