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Abstract—Starting from the desired modal field we solve
for the supporting waveguide refractive index structure within
a semiconductor diode laser. Specifically we analyze the prob-
lem of maximizing far-field on-axis intensity and discuss the
practical aspects of waveguide design.

Index Terms—Laser modes, Semiconductor waveguides, Op-
tical waveguides, Brightness

I. Introduction
Engineering the longitudinal and transverse refractive

index structure of waveguides provides a path to engi-
neering the laser modes of a semiconductor diode laser.
Index structuring not only provides increased modal
discrimination and permits modal selection [1], but also
enables engineering the field profile and properties of the
laser mode itself [2]. Analytically solving the Helmholtz
waveguide equation has been used both for determining
the index structure that produced a mode profile [3]
(that is for waveguide characterization) and as a way
of determining the optical fiber index structure that
supports a desired mode profile [4] (for waveguide design).
We believe a similar approach is applicable to the problem
of engineering a semiconductor laser with a desired modal
field profile. Combined with a Fourier optics analysis of
the problem of far-field on-axis intensity, we can define
engineered mode profiles with enhanced on-axis intensity
and create semiconductor waveguide index structure
that would support laser modes that approximate those
profiles. We analyze the challenge of maximizing far-field
on-axis intensity for higher-order laser modes.

II. Waveguide Solutions to Modal Fields
The Helmholtz waveguide equation can be solved ana-

lytically for a given modal field U(~r) with free-space wave-
vector k0 for the supporting refractive index structure
n(~r):

∇2U(~r) + (n(~r)2 − n2)k2
0U(~r) = 0

=⇒ n(~r) =

√
n2 − ∇2U(~r)

k2
0U(~r)

(1)

Note that we have a set solution waveguide structures for
varied values of modal effective index n.

Not all functional forms of U(~r) will produce practical
or even physical index structures. Indeed, the quantity
∇2U(~r)
U(~r)

must be strictly finite for there to be a finite
solution for (1). However, if said quantity is finite and
bound, then by properly choosing n and by transversely
scaling U(~r) we can obtain an waveguide index profile
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Fig. 1: Waveguide and supported modal intensity (a)
analytical solution with cladding perturbation, and (b)
with additional binary index approximation.

that is bounded to a desired range of index values. It can
be shown that the transversely scaled modal field U(α~r)
will be supported by a waveguide index structure such
that nmin ≤ n(~r) ≤ nmax if we take

n =

√
n2maxχmax − n2

minχmin

χmax − χmin
(2)

α =

√
n2max − n2

min
χmax − χmin

(3)

where we define

χmin = min
∇2U(~r)

k2
0U(~r)

(4)

χmax = max
∇2U(~r)

k2
0U(~r)

(5)

In order to obtain a practically implementable waveg-
uide structure one may (and likely will) need to apply
approximations to the form of U(~r), as well as the n(~r)
resulting from (1). A well-formed approximation of U(~r)

will avoid infinities in ∇2U(~r)
U(~r)

, as in [4]. Generally, one
can apply a lower index cladding once the modal field
is sufficiently decayed, as shown in Figure 1(a). Further
approximations of the calculated index structure, such as
clipping to a select set of index values as shown in Figure
1(b), can yield structures that are simpler to implement,
albeit at the cost of deviating from the target field form.

III. Far-Field On-Axis Intensity
Some applications call for maximizing the on-axis

intensity of a laser beam. A Fourier optics analysis of
near-field to far-field propagation problem relates the
zero-frequency component of the near-field to the on-axis
amplitude of the far-field, meaning that a more uniform
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Fig. 2: Index structures and the 6th mode intensity for
(a) unstructured and (b) engineered waveguides.

Fig. 3: Equation (7) for evaluated for the first 8 modes
of the waveguides shown in Figure 2

mode profile (such as a top-hat or super-Gaussian profile)
will tend to produce higher on-axis intensity [5]. We
approximate the relative on-axis intensity of a standard
semiconductor waveguide laser, assuming that the modes
are approximately sinusoidal in field profile, an assump-
tion appropriate for significant index confinement in a
slab waveguide of width w while the modes (of mode
index n = 1, 2, 3, . . . ) are far from cut-off. So we have the
approximate (normalized) modal field, Un(x):

Un(x) =

√
2

w
sin(

nxπ

w
) for 0 ≤ x ≤ w (6)

The square of the integral of the near-field (6) is propor-
tional to the on-axis far-field intensity:

In(θ = 0) ∝ (

∫ w

0

Un(x)dx)
2 (7)

For the simple waveguide modal field approximation, this
yields:

In(θ = 0) ∝ 2w(1− cos(nπ))2

n2π2
(8)

Equation (8) shows two (intuitive) trends with regard to
the mode index n; first, the even n modes have no on-axis
intensity (their anti-symmetric near-fields destructively
interfere on-axis), and second, higher order modes have
decreasing on-axis intensity.

This Fourier optics perspective implies that the fun-
damental mode (especially one with a top-hat mode
profile) is optimal. However, we can find other, higher-
order, mode profiles that have enhanced on-axis intensity
relative to the simple slab waveguide modes. Higher order
mode on-axis intensity can be enhanced by inducing an
asymmetry in the power distribution between adjacent
(π-phase difference) lobes, and the on-axis intensity null
of even n modes can be avoided by avoiding anti-
symmetric mode profiles. Consider the waveguides and
their n = 6 modes shown in Figure 2. By introducing an
asymmetric grating perturbation into the waveguide, we
are able to create a mode with such a asymmetric power

(a) (b)

Fig. 4: Far-field intensity of the 6th modes for (a)
unstructured and (b) engineered waveguides.

distribution in the lobes. When we evaluate (7) for the
modes of those two waveguides (plotted in Figure 3) we
can see that the simple waveguide has modes for which (7)
follows the trend of the approximation (8). Furthermore,
we see that the asymmetric index structure shown in 2(b)
yields to non-zero (7) for even n modes.

To verify the assumption that (7) correlates to on-
axis power, we propagate the near-fields into the far-field
(shown in Figure 4). Although the engineered 6th mode
does not have most of it’s power on-axis, it does have
a distinct on-axis lobe instead of a null as for the 6th
mode of a simple waveguide, an improvement for higher-
order mode on-axis power, relative to an unstructured
waveguide.

IV. Summary
By solving the Helmholtz waveguide equation for a

given modal field we can obtain a support waveguide
index structure. Although the analytical solution for
the index structure may be non-practical, or even non-
physical, appropriately approximating the field can yield
a physical solution that can provide a starting place
for deriving a practical approximate solution. A Fourier
optics analysis of on-axis intensity provides guidance
towards engineering modes with increased on-axis inten-
sity. This material is based on work supported by Joint
Transition Office Multidisciplinary Research Initiative,
Award No. 17-MRI-0619
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