28 September - 1 October 2020 - Virtual Conference www.ieee-ipc.org

WB4.2 Surface-Etched Laterally Structured
Semiconductor Laser Diodes for Mode Engineering
Pawel Strzebonski**, Kent Choquette ${ }^{\bullet}$
*strzebo2@illinois.edu
Photonic Devices Research Group
Electrical and Computer Engineering Department University of Illinois, Urbana, Illinois 61801 USA

Motivation

- Want high power, high brightness, and high efficiency semiconductor lasers for pump lasers
- Let's focus on high brightness
- Key to high brightness is mode control and engineering
- We want to decrease the number of lasing modes, favor modes with better beam qualities, and perhaps even engineer modes with better beams

The Approach

- Beam brightness is primarily determined by the transverse mode structure, and higher order modes tend to deteriorate brightness
- In broad area edge emitting lasers, largely the lateral (not longitudinal or epitaxial) dimension determines the transverse modes
- Use laterally etched structures (ridges) to control and engineer the lateral/transverse modes

Transverse Index Structure: Conventional vs Surface-Etched

Comparing the transverse index profile for a conventional and mode-engineered 100

Structured \#1

Structured \#2

Simulation: Conventional vs Laterally Etched Waveguide Modes

Comparing modal confinement factors for conventional and mode-engineered structures. Orange points represent cut-off to have same $\Delta \Gamma$ as in a conventional 10 $\mu \mathrm{m}$ wide waveguide:

Structured \#1

Simulation: Conventional vs Laterally Etched Waveguide Modes

Comparing mode intensity profiles for the mode with highest confinement for conventional and mode-engineered structures:

Structured \#1

Structured \#2

Unstructured

Implementation

- Start with $\operatorname{InP} / \operatorname{InGaAsP}$ large optical cavity epitaxy
- Dry etch the mode engineering patterns through the surface (including the same patterns shown in simulation)
- Deposit thick gold contacts to backfill the etches and act as an ion implant mask
- Ion implantation for electrical confinement

Implementation

Top-view microscope images of the fabricated devices:

Structured \#1

Structured \#2

Unstructured
Although contacts are sunk into the etched regions, they are contiguous.

Electrical/Power Performance

Comparison of LIV measurements of structured and unstructured devices:

Structured \#1

Structured \#2
Unpackaged laser bars with uncoated facets, uncooled room temperature operation, 40μ s pulses

Unstructured

Modal Performance

Comparison of optical spectra of structured and unstructured devices:

Structured \#1
Unpackaged laser bars with uncoated factuctured \#2
Unpackaged laser bars with uncoated facets, uncooled room temperature operation, $40 \mu \mathrm{~s} 5 \mathrm{~A}$ pulses

Unstructured

Modal Performance

Comparison of peak-power normalized optical spectra on a linear scale:

[^0]
Near-Fields

Comparison of near-field images of structured and unstructured devices:

IPC

Far-Fields

Comparison of far-field images of structured and unstructured devices:
 IPC

Far-Fields

Comparison of lateral cross-section of far-fields for structured and unstructured devices:

Structured \#1

Structured \#2

Unstructured

Conclusions and Future Work

- We surface-etched lateral ridges into $15 X X$ nm InP edge-emitting lasers
- Our surface-etched devices show deteriorated electrical/power performance vs un-etched control devices
- The surface-etched devices show more distinct peaks in the optical spectrum and obvious lobes in near-fields
- The coherence, or lack thereof, between the near-field lobes has not yet been determined
- Next generation devices with regrowth-buried ridges may improve electrical/power performance
THANKS
qulanTAK 틀 asante vielen dank

[^0]: Unpackaged laser bars with uncoated facets, uncooled room temperature operation, $40 \mu \mathrm{~s} 5 \mathrm{~A}$ pulses

