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Laser Mode and Beam Engineering

Lateral
Direction

Longitudinal Transverse Laser

» Usually transverse Direction Direction Beam
modes define spatial
brightness, and
longitudinal modes
spectral brightness

» Many application

SpeCIfy Edge-Emitting Laser ~ Vertical Cavity Surface Emitting Laser Photonic Crystal Surface Emitting Laser
spatial /spectral . . .. .. .

P / P Orientation of modes and emissions in different diode lasers
properties

» Controlling lasing
modes vital to
engineering laser for
application
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Motivation

Optical communications:
> Want larger bandwidths
» Partially limited by laser modulation response

» Vertical cavity surface emitting laser (VCSEL) arrays can exhibit Photon-photon
resonance (PPR)

» PPR can increase modulation bandwidth (possibly 100's of GHz)
> Effective PPR requires mode control /engineering
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Contents

P Thesis covers:
» General mode/beam engineering theory/concepts
» VCSEL array modeling
» Photonic crystal surface emitting laser modeling/design

» VCSEL array experimental analysis
» And more

» Presentation limited to VCSEL arrays:

Introduce structure

Theory of coupled modes and PPR
Waveguide modeling

Experimental results

Conclusions of VCSEL array work
Future PPR VCSELs work
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Photonic Crystal VCSEL Arrays

» Photonic crystal (PhC) is triangular lattice of
circular etches

» PhC lattice period (A) of 4-5 um

» PhC "Fill-factor” (FF), or diameter to period
ratio of 0.6

» 2 VCSEL cavities defined by missing-hole
defects in PhC

» lon-implantation isolates cavities for individual
control

SEM image of a 2 x 1 PhC
VCSEL array

I ILLINOIS
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Waveguide Array Coupling
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*Past coupled mode theory limited to symmetric arrays
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Photon-Photon Resonance

» Multi-mode effect, > 2 modes interfere

» Interference shifts power between cavities
» Coupled mode theory:
» Quantified as “coupling coefficient” (k)
» k derived from modal effective index splitting
> Limited to symmetric arrays
» Previous method of choice
» Time-varying confinement factor (I') analysis:

> Shifting field varies overlap with cavity gain
» Derived from distributed feedback (DFB) laser work
» Works with any lasers/arrays

» Newly applied to VCSEL arrays
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Supermode Beating and Confinement Factor

Power shifting due to supermode beating

Phase=0" Phase=90" Phase=180" Phase=270"
0.020 w i 0.020 w
ﬂ I 0.03 | I
I 0.03 \ = || = l = ||
= ‘\ £ 0015 J\ ‘\ £ l £ 0.015 H H
s \ g §002 I ¥
5,002 ‘\ 5 0.010 H ‘\ 8 I S 0.010 “ “ | \
z | z | 2 | z |
2 \ a ] 2 0.01 2 |
§001 [ 0,005 A 8 J\ & 0.005 [
= /\ = Moy = I = Moy
0.00 JADAN 0.000 )\ 0.00 J AN 000 )\
50-2.5 00 25 50 50-25 00 25 5.0 50-25 00 25 5.0 50-25 0.0 25 50
x Al x A1 x A1 X [A]

Confinement factors with left and right waveguides

0.7) —— Left Cavity
g 0.6 e -~~~ Right Cavity
£os AN '

2 \

204 )

CU

£03

f=

§ 02

0.1; _ - -
0 100 200 300

Phase [°]

Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering

10/52

I ILLINOIS



Time-Varying Confinement Factor: Rate Equations
> Laser rate equations for change in photon and carrier populations
» Inspired by DFB work
» Translate analysis to multiple cavities and array supermodes
» Small-signal modulation response derived from rate equations
» Time-varying confinement factor is driving term, like current modulation
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Single VCSEL vs Symmetric Dual-VCSEL Array
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Some enhancement in array due to higher power, not PPR (prior coupled mode
analysis agrees that no PPR enhancement in symmetric arrays)
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Symmetric vs Asymmetric Dual-VCSEL Array
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Asymmetry enables photon-photon resonance at 30 GHz (now total array I varies, not
just single cavity I')
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Varying Asymmetric in Dual-VCSEL Array

Modulation Response [dB]

Even minimal asymmetry (e.g. fabrication tolerances) gives PPR effect

Varying cavity I' by factor of 1 +~ (v is asymmetry factor)
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Greater asymmetry, stronger PPR
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Varying Mode Suppression in Dual-VCSEL Array

P PrimaryMode )

Varying mode suppression ratio (MSR =

P SecondaryMode
o
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Dual mode lasing gives stronger PPR
Even “single-mode” lasing (103 = 30 dB MSR) shows PPR effect
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Varying PPR Frequency in Dual-VCSEL Array

Increasing PPR frequency
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Resonance and modulation enhancement pushed outwards
Response between PPR and relaxation frequency drops
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Reconciling PPR Analyses

Coupled Mode Theory (Coupling Coefficient) vs Time-Varying Confinement Factor
Analysis:
> Real k (real modal effective index splitting) determines PPR frequency
» Imaginary k (modal gain splitting, confinement factor splitting, or mode
suppression ratio) determines strength of PPR effect
» Array asymmetry determines total [ variation, determining strength of PPR effect
(coupled mode theory assumes symmetric waveguide arrays)
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Waveguide Modeling

» 2D complex index waveguide model
for 2 x 1 PhC VCSEL arrays

Gain in cavities, loss outside

y [um]

Carrier injection causes index
suppression in cavity

Find 2 highest confinement factor
waveguide modes

Find x from complex modal effective
indices

Real Index
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VCSEL Array Supermodes

Out-of-phase mode
15IntenS|ty [arb. unit]
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Mode and beam intensity profiles
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VCSEL Array Supermodes with Increased Index Suppression (Carrier
Injection)

Highest I mode:

Intensity [arb. unit
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Increasing injection switches from out- oféahase mode to in—zphase mode
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VCSEL Array Coupling with Index Suppression (Carrier Injection)

Real k, Imaginary k;
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Index Suppression

Index Suppression

In-phase and out-of-phase modes switch at the dip in k;
Increase in k, when third central lobe appears

21/52 I ILLINOIS



VCSEL Array Coupling with PhC Period

Real k., Imaginary k;
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Both components of k tend to decrease with A (weaker coupling with larger separation)
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VCSEL Array Coupling with PhC Fill-Factor

Real k., Imaginary k;
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K, and k; counter-vary with fill-factor
Total k magnitude varies much less than k, and «; individually
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VCSEL Array Coupling with Suppression (Injection) Asymmetry

Confinement factor of favored mode Frequency splitting
) )
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0.875 o 35l
0 1 2 3 4 5 0 1 2 3 4 5
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Increasing index suppression in one cavity by dns,ppression lowers I, increases frequency
splitting
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VCSEL Array Modes with Increased Suppression (Injection) Asymmetry

Highest I mode
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Asymmetric injection breaks down coupling, transitions from array supermodes to

individual cavity modes
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VCSEL Array Modes with Increased Suppression (Injection) Asymmetry
Highest I mode beam
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Experimental Analysis: Optical Power

» Driving currents i, I tune array in-to
and out-of coupling

» Optical power increases when coupled

(I greater for array supermode than 2.5
individual cavity mode) 2.0
» Imaginary coupling coefficient related
to power enhancement AP and 1.5
un-enhanced power P 1.0
~ _AP -
> |ki| =~ arpp for coefficients o, § 0.5
10
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VCSEL Array Power Measurements
Design 1 (4 pm period):
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Design 3 (5 pm period):
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VCSEL Array Power Enhancement Estimates
Design 1 (4 pm period):
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Experimental Analysis: Optical Power Results

» Find max |k;| for each array @
» Plot individual and average imaginary 80e
coupling coefficients ®
» Larger PhC periods give smaller i~
imaginary coupling coefficient % 60
(consistent with model) — ‘
» Some arrays show dip in |k;| with g 40le '
increased current (consistent with o g [°)
model)
20 &) ~
8
@
4.0 4.5 5.0
Period [um]
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Experimental Analysis: Beam Profiles

» Coupling causes interference fringes in beam
» Past work has used “visibility” parameter to analyze beam profiles:

>
>
>
>

>

— Imax - Imin
v Imax+Imin

Values from 0 (non-coherent) to 1 (very coherent)

Derived from beam profile minima and maxima

Accurate/effective usage requires tuning (noise removal, envelope removal,
maxima/minima finding, etc.)

Uncertain if applicable to 2D profiles

» Proposed a Fourier method analysis of beam profiles:

>

>
>
>
>

No tuning

Noise resilient

Simpler effective implementation
Simple to apply to 2D profiles
Allows beam-steering analysis too
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Low Coherence

Intermediate Coherence

Experimental Analysis: Fourier Method Beam Analysis

High Coherence

a\ N I\
A I I
= [\ =) A =) [l
= \ c \ <
> / \ > /\ ] ‘\ A > [
g / \ e [\ e [ ]
B [ \ o |\ “ \‘ | \‘ 5 Nl
) / k) \/ | s M
2l | =V 2l 1]
Bl g | 2 \[ 1/
g/ \ gl | ‘ \ g [
gl \/\\ = \ £ [ ‘\/» \
J _ J \_ _J _
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Pixels Pixels Pixels
Low Coherence Intermediate Coherence High Coherence
— 1.00 | — 1.00 | — 1.00 I
= = =
= I = \‘ = I|
E | ] | S [l
5 0. g 0. o 0. |
S 075 “ 075 \ 075 ‘
2 2 2
A Il 5 ‘\‘ = H‘
3 Il g g |
el T o
ES 0.50 I K 0.50 ‘ ‘ K 0.50 ‘ |
= || = = Nl
g 025 A g 025 ‘\ g 025 N
=" [ =" Ad A =" AN
= J \ = AN = IATRIA
= I N AL NS A
-0.02 0.00 0.02 —-0.02 0.00 0.02 —0.02 0.00 0.02

Frequency [1/Pixel]

Frequency [1/Pixel]

Frequency [1/Pixel]

Higher coherence shows as stronger side-peak in Fourier transform of beam
Ratio of side-peak to central peak is % of visibility parameter
Phase of side-peak related to beam-steering
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Experimental Analysis: Beam Analysis Compared

Array power Simple estimate “Tuned” estimate Fourier method

P [mW Visibility s Visibility 8 Peak Ratio

I [mA]

1, [mA]

Visibility estimates are finicky, noisy (tuning involved)
Peak ratio needs no tuning, shows less noise
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Experimental Analysis: Beam Profile Metric Interpretation

» Lower mode 1.00 _——— 1.00 ——
suppression ratio,
lower visibility 0.75 0.75
» Asymmetric > >
supermodes 3 0.50 3 0.50
(asymmetric array or @ / B
: : S / S
breaking coupling) /
lower visibility 0251/ 025
/
» Consider supermode /’
with (1, «) power in 0.00 0.00
.. 0 10 20 30 0.00 025 0.50 0.75 1.00
two cavities MSR [dB] a

I ILLINOIS

Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering 34/52



VCSEL Array Design 1 Beam Analysis

Power [mW]
~  —— = ™

Peak Ratio Peak Phase [°]

0.35
0.30
0.25
0.20
0.15
0.10
0.05

I [mA]

W s o~
I [MmA]

345 6 7 8
11 [mAl] I [mA]

1 [mA]

Two coherent ridges visible in peak ratio
Phase varies smoothly across coherent ridge (beam-steering)
Large phase transition between the two (switch between in-phase-like and
out-of-phase-like modes)
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VCSEL Array Design 1 Beam Analysis

Low power coherent ridge:
Peak Ratio (11, 12)=(2.7,4.0) (11,12)=(2.95,4.0) (11, 12)=(3.2,4.0) (11, 12)=(3.45,4.0)
- 2 "

N A

/_ ~110.35

7 Y | 30
e 025
020

5 0.15 } |\
' 0.10 N
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1, [mA] High power coherent ridge:
(11, 1,)=(6.85,7.5) (1, L)=(6.9,7.5) (I, L)=(6.95,7.5) (11, )=(7.0,7.5)

N

Locations of beam
profiles marked
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o \_ _~ \ J — ~ AN

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
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The two ridges show beam-steering and different beam profiles from

the different supermodes
Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering 36/52 I ILLINOIS



VCSEL Array Design 2 Beam Analysis

P?_Yver [mw] Peak Ratio Peak Phase [°]
v
1.0 7 0.20 7 e }f;g
6
- 08 015 7 6 50
£ 06 ES5 E> 0
= s 4 010 3, _50
0.05 —100
02 3 3 ~150
T s 6 7 8 3 4 5 6 7 8
11 [mA] 1 [mA]

Much narrower coherent ridge visible in peak ratio
Phase varies smoothly across coherent ridge (beam-steering)
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VCSEL Array Design 3 Beam Analysis

Power [mW] Peak Ratio Peak Phase [°]
) 7 0.35 7 150
2.0 6 g.:;) 6 100
_ — . - 50
< 15 < <
E ES 020 E° 0
o 1.0 o g 0.15 <4 =50
o R 0.10 3 -100
. 0.05 -150
74 5 6 7 8 4 5 6 7 8

1 [mA] 11 [mA] I [mA]

Narrower coherent ridge visible in peak ratio
Phase varies smoothly across coherent ridge (beam-steering)
Ridge shows unusual low visibility features at center at some power levels
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VCSEL Array Design 3 Beam Analysis

Rapid profile variation due to mode transitions:

Peak Ratio (/1,/z)=(5;53,5.0) (h, lz)=("‘5.5?,5.0) (I, 2)=(5.63,5.0) (/1,/2)=(§.68,5,0)
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Experimental Analysis: Beam Profile Results

» Fourier peak ratio analysis is effective (finds coherence when power enhancement
cannot)
> Two coherent ridges of different supermodes, consistent with waveguide model
P> Beam-steering across coherent ridge, consistent with waveguide model
» Find pockets of low visibility beams within coherent ridges:
> Likely low |k;| and MSR
> May be great conditions for PPR modulation enhancement (response vs MSR below)
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Results: 2 x 1 VCSEL Arrays

» Time-varying confinement factor analysis of photon-photon resonance:
» Linked to coupling coefficient analysis
» Predict stronger PPR modulation at lower MSR and higher asymmetry
> 2D complex index waveguide model:
» Link PhC design and current injection to complex coupling coefficient
» Predict mode switching and associated imaginary coupling coefficient reduction with

varied current injection
» Predict breakdown of coupling, lowered beam visibility, and beam-steering with

asymmetric current injection

» Experimental analysis:
» Show decreased peak imaginary coupling coefficient with increased PhC period
(consistent with model)
» Show mode switching and associated imaginary coupling coefficient reduction with
varied current injection (consistent with model)
» Develop improved Fourier method of beam profile analysis
» Show decrease in beam visibility and beam-steering as current injection is varied off
the coherent ridge (consistent with model)
I ILLINOIS
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Experimental Validation

» Characterize small-signal modulation response and PPR frequency across multiple
VCSEL array designs, driving conditions:

» Verify model’s real coupling coefficient trends
» Verify rate equation’s prediction of stronger PPR modulation enhancement with

lower MSR (|x;])
» Fabricate/characterize VCSEL arrays with different PhC fill-factors

» Apply characterization methods to larger VCSEL arrays (e.g. triangular
three-element arrays)

I ILLINOIS
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Alternative PPR VCSELs: Composite Resonator Vertical Cavity Lasers
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Alternative PPR VCSELs: Engineered Waveguide/Gain

» Can try to use PPR between modes of a single
cavity
» Triangular waveguide modes can beat, shifting

field between less leaky base and more leaky tip

Challenge for triangle waveguide is lowering
frequency splitting between modes

Near-degenerate modes of rectangular
waveguide can have correct frequency splitting

Have to engineer active region (gain profile) to
select for the correct two modes
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