# Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering

Pawel Strzebonski

Photonic Devices Research Group University of Illinois, Urbana-Champaign

2021-08-20

Pawel Strzebonski, Final Examination:

ces in Semiconductor Laser Moderar

am Engineering

**I**ILLING

## Table of Contents

## Introduction

Coupled VCSEL Arrays

Conclusion

Future Works

Publications



## Laser Mode and Beam Engineering

- Usually transverse modes define spatial brightness, and longitudinal modes spectral brightness
- Many application specify spatial/spectral properties
- Controlling lasing modes vital to engineering laser for application



Edge-Emitting Laser Vertical Cavity Surface Emitting Laser Photonic Crystal Surface Emitting Laser Orientation of modes and emissions in different diode lasers



## Motivation

Optical communications:

- Want larger bandwidths
- Partially limited by laser modulation response
- Vertical cavity surface emitting laser (VCSEL) arrays can exhibit Photon-photon resonance (PPR)
- ▶ PPR can increase modulation bandwidth (possibly 100's of GHz)
- Effective PPR requires mode control/engineering



## Contents

#### Thesis covers:

- General mode/beam engineering theory/concepts
- VCSEL array modeling
- Photonic crystal surface emitting laser modeling/design
- VCSEL array experimental analysis
- And more
- Presentation limited to VCSEL arrays:
  - Introduce structure
  - Theory of coupled modes and PPR
  - Waveguide modeling
  - Experimental results
  - Conclusions of VCSEL array work
  - Future PPR VCSELs work



## Table of Contents

Introduction

Coupled VCSEL Arrays

Conclusion

Future Works

Publications



# Photonic Crystal VCSEL Arrays

- Photonic crystal (PhC) is triangular lattice of circular etches
- PhC lattice period (A) of 4-5  $\mu$ m
- PhC "Fill-factor" (FF), or diameter to period ratio of 0.6
- 2 VCSEL cavities defined by missing-hole defects in PhC
- Ion-implantation isolates cavities for individual control



SEM image of a  $2\times 1~\text{PhC}$  VCSEL array



# Waveguide Array Coupling







Different index/size (tuned to couple)



\*Past coupled mode theory limited to symmetric arrays

Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering

8/52



## Photon-Photon Resonance

- Multi-mode effect, 2 modes interfere
- Interference shifts power between cavities
- Coupled mode theory:
  - Quantified as "coupling coefficient" ( $\kappa$ )
  - $\blacktriangleright$   $\kappa$  derived from modal effective index splitting
  - Limited to symmetric arrays
  - Previous method of choice
- Time-varying confinement factor (Γ) analysis:
  - Shifting field varies overlap with cavity gain
  - Derived from distributed feedback (DFB) laser work
  - Works with any lasers/arrays
  - Newly applied to VCSEL arrays



## Supermode Beating and Confinement Factor





## Time-Varying Confinement Factor: Rate Equations

- Laser rate equations for change in photon and carrier populations
- Inspired by DFB work
- Translate analysis to multiple cavities and array supermodes
- Small-signal modulation response derived from rate equations
- Time-varying confinement factor is driving term, like current modulation



## Single VCSEL vs Symmetric Dual-VCSEL Array



Some enhancement in array due to higher power, not PPR (prior coupled mode analysis agrees that no PPR enhancement in symmetric arrays)



## Symmetric vs Asymmetric Dual-VCSEL Array





# Varying Asymmetric in Dual-VCSEL Array







15/52



# Varying PPR Frequency in Dual-VCSEL Array





Coupled Mode Theory (Coupling Coefficient) vs Time-Varying Confinement Factor Analysis:

- > Real  $\kappa$  (real modal effective index splitting) determines PPR frequency
- Imaginary κ (modal gain splitting, confinement factor splitting, or mode suppression ratio) determines strength of PPR effect
- Array asymmetry determines total Γ variation, determining strength of PPR effect (coupled mode theory assumes symmetric waveguide arrays)



## Waveguide Modeling

- 2D complex index waveguide model for 2 × 1 PhC VCSEL arrays
- Gain in cavities, loss outside
- Carrier injection causes index suppression in cavity
- Find 2 highest confinement factor waveguide modes
- Find κ from complex modal effective indices



## VCSEL Array Supermodes

## Out-of-phase mode

#### In-phase mode



#### Mode and beam intensity profiles



# VCSEL Array Supermodes with Increased Index Suppression (Carrier Injection)



Highest Γ mode:

2nd highest Γ mode:



**ILLINOIS** 

Increasing injection switches from out-of-phase mode to in-phase mode Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering 20/52 VCSEL Array Coupling with Index Suppression (Carrier Injection)



In-phase and out-of-phase modes switch at the dip in  $\kappa_i$ Increase in  $\kappa_r$  when third central lobe appears



## VCSEL Array Coupling with PhC Period



Both components of  $\kappa$  tend to decrease with  $\Lambda$  (weaker coupling with larger separation)



## VCSEL Array Coupling with PhC Fill-Factor



 $\kappa_r$  and  $\kappa_i$  counter-vary with fill-factor Total  $\kappa$  magnitude varies much less than  $\kappa_r$  and  $\kappa_i$  individually



VCSEL Array Coupling with Suppression (Injection) Asymmetry



Increasing index suppression in one cavity by  $\delta n_{\text{suppression}}$  lowers  $\Gamma$ , increases frequency splitting



## VCSEL Array Modes with Increased Suppression (Injection) Asymmetry Highest $\Gamma$ mode



2nd highest  $\Gamma$  mode



Asymmetric injection breaks down coupling, transitions from array supermodes to individual cavity modes



# VCSEL Array Modes with Increased Suppression (Injection) Asymmetry Highest $\Gamma$ mode beam



2nd highest  $\Gamma$  mode beam



Asymmetric injection deteriorates interference fringes in beam, induces beam-steering



## Experimental Analysis: Optical Power

- Driving currents *l*<sub>1</sub>, *l*<sub>2</sub> tune array in-to and out-of coupling
- Optical power increases when coupled (Γ greater for array supermode than individual cavity mode)
- Imaginary coupling coefficient related to power enhancement ΔP and un-enhanced power P

• 
$$|\kappa_i| \approx \frac{\Delta P}{\alpha + \beta P}$$
 for coefficients  $\alpha, \beta$ 





## VCSEL Array Power Measurements

#### Design 1 (4 $\mu$ m period):



Design 2 (4.5  $\mu$ m period):



#### Design 3 (5 $\mu$ m period):





## VCSEL Array Power Enhancement Estimates

#### Design 1 (4 $\mu$ m period):



Design 2 (4.5  $\mu$ m period):



## Design 3 (5 $\mu$ m period):





## Experimental Analysis: Optical Power Results

- Find max  $|\kappa_i|$  for each array
- Plot individual and average imaginary coupling coefficients
- Larger PhC periods give smaller imaginary coupling coefficient (consistent with model)
- $\blacktriangleright$  Some arrays show dip in  $|\kappa_i|$  with increased current (consistent with model)



## Experimental Analysis: Beam Profiles

- Coupling causes interference fringes in beam
- Past work has used "visibility" parameter to analyze beam profiles:

  - V =  $\frac{I_{max} I_{min}}{I_{max} + I_{min}}$  Values from 0 (non-coherent) to 1 (very coherent)
  - Derived from beam profile minima and maxima
  - Accurate/effective usage requires tuning (noise removal, envelope removal. maxima/minima finding. etc.)
  - Uncertain if applicable to 2D profiles
- Proposed a Fourier method analysis of beam profiles:
  - No tuning
  - Noise resilient
  - Simpler effective implementation
  - Simple to apply to 2D profiles
  - Allows beam-steering analysis too



## Experimental Analysis: Fourier Method Beam Analysis



Higher coherence shows as stronger side-peak in Fourier transform of beam Ratio of side-peak to central peak is  $\frac{1}{2}$  of visibility parameter Phase of side-peak related to beam-steering

Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering

32/52



## Experimental Analysis: Beam Analysis Compared



Visibility estimates are finicky, noisy (tuning involved) Peak ratio needs no tuning, shows less noise



## Experimental Analysis: Beam Profile Metric Interpretation

 Lower mode suppression ratio, lower visibility

 Asymmetric supermodes

 (asymmetric array or breaking coupling)
 lower visibility

 Consider supermode with (1, α) power in two cavities





## VCSEL Array Design 1 Beam Analysis



Two coherent ridges visible in peak ratio Phase varies smoothly across coherent ridge (beam-steering) Large phase transition between the two (switch between in-phase-like and out-of-phase-like modes)



# VCSEL Array Design 1 Beam Analysis



## VCSEL Array Design 2 Beam Analysis



Much narrower coherent ridge visible in peak ratio Phase varies smoothly across coherent ridge (beam-steering)



## VCSEL Array Design 3 Beam Analysis



Narrower coherent ridge visible in peak ratio Phase varies smoothly across coherent ridge (beam-steering) Ridge shows unusual low visibility features at center at some power levels



# VCSEL Array Design 3 Beam Analysis



39/52



## Experimental Analysis: Beam Profile Results

- Fourier peak ratio analysis is effective (finds coherence when power enhancement cannot)
- > Two coherent ridges of different supermodes, consistent with waveguide model
- Beam-steering across coherent ridge, consistent with waveguide model
- Find pockets of low visibility beams within coherent ridges:
  - Likely low  $|\kappa_i|$  and MSR
  - May be great conditions for PPR modulation enhancement (response vs MSR below)



Pawel Strzebonski, Final Examination: Advances in Semiconductor Laser Mode and Beam Engineering



## Table of Contents

Introduction

**Coupled VCSEL Arrays** 

## Conclusion

Future Works

Publications



## Results: $2 \times 1$ VCSEL Arrays

- Time-varying confinement factor analysis of photon-photon resonance:
  - Linked to coupling coefficient analysis
  - Predict stronger PPR modulation at lower MSR and higher asymmetry
- 2D complex index waveguide model:
  - Link PhC design and current injection to complex coupling coefficient
  - Predict mode switching and associated imaginary coupling coefficient reduction with varied current injection
  - Predict breakdown of coupling, lowered beam visibility, and beam-steering with asymmetric current injection

## Experimental analysis:

- Show decreased peak imaginary coupling coefficient with increased PhC period (consistent with model)
- Show mode switching and associated imaginary coupling coefficient reduction with varied current injection (consistent with model)
- Develop improved Fourier method of beam profile analysis
- Show decrease in beam visibility and beam-steering as current injection is varied off the coherent ridge (consistent with model)



## Table of Contents

Introduction

Coupled VCSEL Arrays

Conclusion

Future Works

Publications



## Experimental Validation

- Characterize small-signal modulation response and PPR frequency across multiple VCSEL array designs, driving conditions:
  - Verify model's real coupling coefficient trends
  - Verify rate equation's prediction of stronger PPR modulation enhancement with lower MSR (|κ<sub>i</sub>|)
- ► Fabricate/characterize VCSEL arrays with different PhC fill-factors
- Apply characterization methods to larger VCSEL arrays (e.g. triangular three-element arrays)



## Alternative PPR VCSELs: Composite Resonator Vertical Cavity Lasers

- Composite resonator vertical cavity lasers (CRVCLs) or dual-wavelength VCSELs
- Two epitaxialy defined cavities separated by a middle DBR section
- PPR effect from the beating of two longitudinal modes
- More complicated epitaxy but may be simpler to tune/operate (needs only a single active cavity)





## Alternative PPR VCSELs: Engineered Waveguide/Gain

- Can try to use PPR between modes of a single cavity
- Triangular waveguide modes can beat, shifting field between less leaky base and more leaky tip
- Challenge for triangle waveguide is lowering frequency splitting between modes
- Near-degenerate modes of rectangular waveguide can have correct frequency splitting
- Have to engineer active region (gain profile) to select for the correct two modes







## Table of Contents

Introduction

**Coupled VCSEL Arrays** 

Conclusion

Future Works

Publications



## Published Publications I

## ORCiD: orcid.org/0000-0001-5628-6296

- Pawel Strzebonski and Kent Choquette. Complex waveguide supermode analysis of coherently coupled microcavity laser arrays. IEEE Journal of Selected Topics in Quantum Electronics, 28(1):1–6, January 2022.
- Raman Kumar, <u>Pawel Strzebonski</u>, Katherine Lakomy, and Kent D. Choquette. Orbital angular momentum modes from VCSELs using grayscale photolithography. IEEE Photonics Technology Letters, 33(16):824–827, August 2021a.
- Pawel Strzebonski and Kent D. Choquette. Guided mode expansion analysis of photonic crystal surface emitting lasers. In 2021 Annual Directed Energy Science and Technology Symposium. DEPS, 2021.
- Pawel Strzebonski, Harshil Dave, Katherine Lakomy, Nusrat Jahan, William North, and Kent Choquette. Computational methods for VCSEL array characterization and control. In Kent D. Choquette and Chun Lei, editors, Vertical-Cavity Surface-Emitting Lasers XXV. SPIE, March 2021a.



## Published Publications II

- Raman Kumar, <u>Pawel Strzebonski</u>, Katherine Lakomy, and Kent D. Choquette. Orbital angular momentum modes from VCSELs using grayscale photolithography. IEEE Photonics Technology Letters, pages 1–1, 2021b.
- Pawel Strzebonski, William North, Nusrat Jahan, and Kent D. Choquette. Machine learning analysis of 2x1 VCSEL array coherence and imaginary coupling coefficient. In 2021 Conference on Lasers and Electro-Optics. IEEE, 2021b.
- Nusrat Jahan, William North, <u>Pawel Strzebonski</u>, Katherine Lakomy, and Kent D. Choquette. Extraction of coupling coefficient for coherent 2x1 VCSEL array. In 2021 Conference on Lasers and Electro-Optics. IEEE, 2021.
- William North, Nusrat Jahan, <u>Pawel Strzebonski</u>, and Kent D. Choquette. Spectral mode analysis of non-Hermitian phased microcavity laser array. In 2021 Conference on Lasers and Electro-Optics. IEEE, 2021.



## Published Publications III

- Raman Kumar, Katherine Lakomy, William North, <u>Pawel Strzebonski</u>, and Kent D. Choquette. Integrated dielectric micro-optical elements on VCSELs using grayscale photolithography. In 2021 Conference on Lasers and Electro-Optics. IEEE, 2021c.
- Pawel Strzebonski, Katherine Lakomy, and Kent Choquette. Surface-etched laterally structured semiconductor laser diodes for mode engineering. In 2020 IEEE Photonics Conference (IPC). IEEE, September 2020a.
- Pawel Strzebonski and Kent Choquette. Machine learning for modal analysis. In 2020 IEEE Photonics Conference (IPC). IEEE, September 2020.
- Pawel Strzebonski, Raman Kumar, and Kent Choquette. Beam-steering in 2D via non-linear mapping of 1D beam-steering. In 2020 IEEE Photonics Conference (IPC). IEEE, September 2020b.



## Published Publications IV

- Raman Kumar, <u>Pawel Strzebonski</u>, and Kent D. Choquette. Orbital angular momentum modes from coherently coupled VCSEL arrays. In 2020 IEEE Photonics Conference (IPC). IEEE, September 2020.
- Pawel Strzebonski and Kent Choquette. Direct semiconductor diode laser mode engineering and waveguide design. In 2019 IEEE Photonics Conference (IPC). IEEE, September 2019.
- Pawel Strzebonski. Semiconductor laser mode engineering via waveguide index structuring. Master's thesis, University of Illinois at Urbana-Champaign, 12 2018.
- Pawel Strzebonski, Bradley Thompson, Katherine Lakomy, Paul Leisher, and Kent D. Choquette. Mode engineering via waveguide structuring. In 2018 IEEE International Semiconductor Laser Conference (ISLC). IEEE, sep 2018.



## Planned/Ongoing Publications

- Multi-cavity time-varying confinement factor analysis for VCSEL array PPR
- Derivation and theory of visibility and Fourier method peak ratio metrics for 2 × 1 VCSEL arrays
- Waveguide model and experimental validation of supermodes and coupling in 2 × 1 VCSEL arrays
- Guided mode expansion analysis of photonic crystal surface emitting lasers (journal version)

