Challenges

• 2×1 arrays of optically Coherently-coupled operation coupled photonic crystal (and reaping benefits thereof) VCSELs require tuning of driving When arrays are tuned to currents optical coherence: Array design requires ability to • Higher optical power [1] characterize coherence and • Electrically-controlled coupling behavior beam-steering [1] Lower intensity noise [1] Many possible methods of • Higher modulation bandwidth [2] analyzing coherence [3] • We explore machine learning Need to develop automated for the analysis of optical measurement and analysis coupling and coherence in methods for array VCSEL arrays

Naive Approach

Introduction

- Want to calculate coherent optical power enhancement
- Need to know what the uncoupled array power would be
- "Naive" approach is to estimate this as sum of individual element powers:

 $P_{ ext{total,uncoupled}}(I_1,I_2)pprox$

 $P_1(I_1) + P_2(I_2)$

For driving currents $I_{1,2}$ and element optical powers $P_{1,2}$

power

Machine Learning Analysis of 2×1 VCSEL Array Coherence and Imaginary Coupling Coefficient

Pawel Strzebonski^{®*}, William North[®], Nusrat Jahan[®], Kent D. Choquette[®] Electrical and Computer Engineering Department University of Illinois, Urbana, Illinois 61801 USA *strzebo2@illinois.edu

May 11, 2021

car to c ana CUr to c COL

Issues

- We calculate coherent power enhancement using naive estimate of uncoupled power
- Results show no enhancement nearly everywhere (even on the coherent ridge)
- Naive approach does not incorporate for thermal cross-talk affecting element power even in uncoupled regime [5]

*I*₁ [mA]

Approach ork (ANN) to infer the optical array power

quare-error between measured and

aining (measurement) dataset will induce

nent dataset

points (measurements with much more power than

set (excluding likely coherent datapoints)

